12Cr1MoV 无缝钢管订货技术条件

1. 范围

本技术条件适用于发电设备用12Cr1MoV热轧钢管和锻造大口径钢管。

2. 适用的标准

按本技术条件供应的材料,除满足下列要求外,还应符合 最新版本的 GB5310 标准的规定。

- 治炼方法 镇静钢,真空脱气。
- 4. 化学成份和力学性能
- 4.1 化学成份

表 1	化	学	成	份	(%)
	7,57,000	4		., .	, , , ,

С	Si	Mn	Cr	Мо	V	P	S	Ni	Cu
0. 08	0. 17	0.40	0.90	0. 25	0. 15	<	<	<	<
~ 0. 15	~ 0. 37	~ 0.70	~ 1. 20	~ 0. 35	~ 0. 30	0. 030	0. 030	0. 25	0.20

4.2 力学性能

表2 力学性能

		YS (MPa)	TS (MPa)	E1% (Lo=50)	夏比V 20℃(J)
纵	向	≥ 255	470 ~ 640	≥ 21	≥ 31
横	向	≥ 255	≥ 440	≥19	≥ 27

注: 管状试样或片状试样或圆棒试样的试验结果都应满足上表要求。

壁厚≥12mm的管子应进行夏比冲击试验。从横向或纵向取 三个试样为一组,其平均冲击值应满足上表所列要求,但允许 其中一个试样的冲击值比上表规定值低30%。

5. 热处理

所有管子应该进行热处理。显微组织中不允许有马氏体和两相区(Ac1~Ac2)回火组织。

正火(淬火):每毫米壁厚保温1分钟,但不得少于30分钟。 回火:每毫米壁厚保温2分钟,但不得少于2小时。

5.1 壁厚≤30mm

在980℃~1020℃正火,然后空冷,并经720℃~750℃回火。

如果终轧温度在980~1020℃之间,管子只需经720~750℃回火。

5.2 壁厚 > 30mm

960℃~980℃正火,油冷或喷雾,720℃~750℃回火。

6. 无损检测

6.1 涡流探伤

管子应按 JIS0583 逐根进行涡流探伤。

校对标准应该是沿管子径向钻一个贯穿整个管壁的圆孔,标准孔尺寸如表3。

Acc Manage Manag			
OD (mm)	孔		
27 < 0D ≤ 48	1.7ф		
48 < 0D ≤ 64	2. 2 ф		
64 < 0D ≤ 180	2.5ф		

表 3 涡流探伤标准缺陷

6.2 超声波探伤

每根钢管应按附件2的规定进行超声波探伤。

- 6.3 对外径>180mm的钢管,可用漏磁探伤或涡流探伤代替水压 试验, 探伤方法按ASME SA-335第12条进行。
- 6.3.1 漏磁探伤样管标准缺陷尺寸如下:

深 度 <名义壁厚的12.5%(最小0.2mm,最大1.5mm)

宽 度 <深度

长 度 <25.4mm

- 6.3.2 涡流探伤校对标准应该是沿管子径向钻一个直径小于2.5mm 的贯穿整个管壁的圆孔。
- 6.4 仅对锻造管允许按6.2进行超声波探伤代替水压试验。
- 7. 表面质量

每根钢管应进行外观检查,并应符合表4规定的要求。

		衣4 衣 面 缺 陷
缺陷名	名称	验收标准
折	迭	不允许
裂	纹	不允许
直	道	深度≤名义壁厚的5%, 最大0.4mm

- 8. 尺寸偏差
- 8.1 允许的壁厚偏差:

壁厚 < 20mm: +12.5%, -10%

壁厚≥20mm: ±10%

8.2 偏心率

用下式计算的任何一根钢管的任意截面上的壁厚偏差不应 超过18%。

(S最大-S最小)/S平均×100% ≤18%

式中: S最大: 最大壁厚

S最小: 最小壁厚

S平均: 实际平均壁厚

以上所测壁厚均在同一截面上。

8.3 弯曲度

每根钢管尽量平直,偏差不应大于1.0mm/M,全长不大于6mm。

9. 钢管长度

小口径管(外径<159mm)长度为8~12M, 大口径管(外径≥159mm)长度为6~8M。

10. 质量证明书

钢厂的质量证明书应包括试验和检验的结果,并按表5提供下列内容:

表5 试验报告

			_	
试验和检验	取材	羊数量	试验	报告
熔炼分析	1/套	手炉批	数据	结果
成品分析	1/套	手炉批	数据	结果
拉伸试验	从两根管-	子取样/每批	数据	结果
压扁试验	从两根管-	子取样/每批	合	格
冲击试验	从两根管-	子取样/每批	数据	结果
超探检验	全	部	合	格
涡流检验	全	部	合	格
漏磁检验	全	部	合	格
表面检查	全	部	合	格
尺寸检查	全	部	合	格
热处理			方法、温	度、时间

注: "批"指的是相同钢种、同一炉批、相同尺寸和同样热处理

11. 标记

每根钢管上应清晰地漏字模印下列内容。直径小于30mm的管子,所要求的内容可以记在标签上,而标签应牢固地栓在每捆钢管的一端。

- (1) 制造厂的名称或商标
- (2) "12Cr1MoV"
- (3) 制造厂的产品编号
- (4) 公称尺寸(直径、壁厚和长度)
- (5) 生产的年和月
- (6) 炉号

12. 防腐涂层

每根钢管应,采用下列防腐材料。

外表面: 涂改进型的醇酸树脂油

内表面:外径<159mm,充气相缓蚀剂,

管子两端封塑料盖。

外径≥159mm, 无

13. 包装

- 13.1 外径 < 159mm
 - (1) 管子应该包装成捆。
 - (2) 每捆钢管的重量不应超过2公吨。
 - (3) 至少有五处用钢带或铁丝把钢管捆成捆。
- 13.2 外径≥159mm, 散装。

注: 持久强度: σ105 (参考值)

温度℃	475	500	525	550	560	580
MPa	197	186	147	108	98	78

11. 标记

每根钢管上应清晰地漏字模印下列内容。直径小于30mm的管子,所要求的内容可以记在标签上,而标签应牢固地栓在每捆钢管的一端。

- (1) 制造厂的名称或商标
- (2) "12Cr1MoV"
- (3)制造厂的产品编号
- (4) 公称尺寸(直径、壁厚和长度)
- (5) 生产的年和月
- (6) 炉号

12. 防腐涂层

每根钢管应,采用下列防腐材料。

外表面:涂改进型的醇酸树脂油

内表面:外径<159mm,充气相缓蚀剂,

管子两端封塑料盖。

外径≥159mm, 无

13. 包装

- 13.1 外径 < 159mm
 - (1) 管子应该包装成捆。
 - (2) 每捆钢管的重量不应超过2公吨。
 - (3) 至少有五处用钢带或铁丝把钢管捆成捆。
- 13.2 外径≥159mm, 散装。

注: 持久强度: σ10⁵ (参考值)

温度℃	475	500	525	550	560	580
MPa	197	186	147	108	98	78